Graph-based normalization

نویسنده

  • Catherine Aaron
چکیده

Abstract. In this paper we construct a graph-based normalisation algorithm for non-linear data analysis. The principle of this algorithm is get, in average, spherical neighborhood with unit ray. In a first paragraph we show why this algorithm can be useful as a preliminary for some neural algorithms as those that need to compute geodesic distance. Then we present the algorithm, its stochastic version and some graphical results. Finally, we observe the effects of algorithm on reconstruction of geodesic distance by running Dijksrta’s algorithm [1].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graph-based normalization and whitening for non-linear data analysis

In this paper we construct a graph-based normalization algorithm for non-linear data analysis. The principle of this algorithm is to get a spherical average neighborhood with unit radius. First we present a class of global dispersion measures used for "global normalization"; we then adapt these measures using a weighted graph to build a local normalization called "graph-based" normalization. Th...

متن کامل

On the Effectiveness of Laplacian Normalization for Graph Semi-supervised Learning

This paper investigates the effect of Laplacian normalization in graph-based semi-supervised learning. To this end, we consider multi-class transductive learning on graphs with Laplacian regularization. Generalization bounds are derived using geometric properties of the graph. Specifically, by introducing a definition of graph cut from learning theory, we obtain generalization bounds that depen...

متن کامل

Normalization of qPCR array data: a novel method based on procrustes superimposition

MicroRNAs (miRNAs) are short, endogenous non-coding RNAs that function as guide molecules to regulate transcription of their target messenger RNAs. Several methods including low-density qPCR arrays are being increasingly used to profile the expression of these molecules in a variety of different biological conditions. Reliable analysis of expression profiles demands removal of technical variati...

متن کامل

Architecture for Text Normalization using Statistical Machine Translation techniques

This paper proposes an architecture, based on statistical machine translation, for developing the text normalization module of a text to speech conversion system. The main target is to generate a language independent text normalization module, based on data and flexible enough to deal with all situations presented in this task. The proposed architecture is composed by three main modules: a toke...

متن کامل

A Graph-based Approach for Contextual Text Normalization

The informal nature of social media text renders it very difficult to be automatically processed by natural language processing tools. Text normalization, which corresponds to restoring the non-standard words to their canonical forms, provides a solution to this challenge. We introduce an unsupervised text normalization approach that utilizes not only lexical, but also contextual and grammatica...

متن کامل

Learning on Graph with Laplacian Regularization

We consider a general form of transductive learning on graphs with Laplacian regularization, and derive margin-based generalization bounds using appropriate geometric properties of the graph. We use this analysis to obtain a better understanding of the role of normalization of the graph Laplacian matrix as well as the effect of dimension reduction. The results suggest a limitation of the standa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005